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Goal: “make it easier for scientists to execute large-scale
computational tasks that use the power of computing resources
they do not own to process data they did not collect with
applications they did not develop”

Challenges

= Estimate the application resource needs
= Allocate the needed resources

= Manage applications and resources during run, adapt
allocations, or intervene on behalf of the resources
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Experimental Foundation

Real-world applications
— Sets of tasks and workflows managed by workflow
management systems (Pegasus and Makeflow)

= State of the art computing capabilities—Argonne Leadership
Computing Facility and Open Science Grid

= Campus resources at ND, UCSD and UW
= Commercial cloud services

= Experimentation from the point of view of a scientist: “submit
locally and compute globally”

= Pay attention to the cost involved in acquiring the resources and
the human effort involved in software and data deployment and
application management

— Automate as much as possible
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Approach
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Execution Traces dv/dt ]
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HTC Monitoring

= Job wrappers that collect information about processes
— Runtime, peak disk usage, peak memory usage, CPU usage, etc.

= Mechanisms
— Polling (not accurate, low overhead)
— ptrace() system call interposition (accurate, high overhead)
— LD _PRELOAD library call interposition (accurate, low overhead)

= Kickstart (Pegasus) and resource-monitor (Makeflow)

Polling LD_PRELOAD | Ptrace (syscalls)
CPU 0.5% - 12% 0.5% - 5% <0.2%
ErrOr (Accuracy) Memory 2% - 14% <0.1% ~ 0%
I/0 2% - 20% 0% 0%
Polling LD_PRELOAD | Ptrace (syscalls)
Ove r h ead CPU low low low
Memory low medium medium
1/0 low low high
Gideon Juve, et al., Practical Resource Monitoring for Robust High
USC Viterbi Throughput Computing, University of Southern California, Technical Report

255

14-950, 2014.
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HPC Monitoring (ALCF)

= Job information from scheduler (Cobalt)
— Use scheduler data for both scheduler and individual task data
— Job runtime, number of cores, user estimates, etc.

= |/O using Darshan
— Instrumentation automatically linked into codes at compile time

— Captures POSIX I/O, MPI 1/O and some HDF5 and NetCDF
functions

— Amount read/written, time in /O, files accessed, etc.
— Very low overhead in both time and memory

= Performance Counters using AutoPerf
— Using built-in hardware performance counters
— Also enabled at compile time
— Counters zeroed in MPI_Init, and reported in MPI_Finalize
— FLOPSs, cache misses, etc.

— Users can take control of performance counters preventing this
from working

USC Viterbi 7 Zﬁg
?C? o fE Sg;mmr Institute



Building resource archives

Workload Archive

Execution Traces dVv/dt ]

l Monitoring H Execution l
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Resources Archive

® The resource summary archive captures the information gathered by
our monitoring tools

e The archive is publicly readable at http://dvdt.crc.nd.edu.

o Build on top of the content management system Drupal and custom
PHP and python code

o Database backend running MySQL.

® Users of the archive can submit sets of resources summaries through a
web interface, or with a batch job using ssh keys for authentication

® The archive can be queried to produce task summaries that match
conditions, such as task name, monitoring tool used, and resource values
comparisons
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Resources Archive - Workflows per User

user: gideon
name hash type command
pegasus-plan --conf pegasusrc --dir work
--dax dax.xml --sites execution
rosetta(76) 22cacabcaf2494a0b70ed4f70016dc93 pegasus _ _ )
--staging-site CCG --output-site local
--cluster horizontal --submit
pegasus-plan --conf conf/pegasusrc --sites
ec2 --dir work/dags --output-site s3 --dax
imputation- /Ifsl/work/page/work/imputation-
P _ 3el6fabl377dbcdd4b774d4b63fd52c7 pegasus _ pad P _ )
mec-pilot-0(72) mec-pilot.dax --nocleanup --input-dir
/Ifsl/work/page/sample-input --cluster
horizontal -vv --force --submit
pegasus-plan --conf pegasusrc --dir work
--dax dax.xml --sites execution
rosetta(77) 624b453f22c8bbdadfba875bcfo0f686 pegasus

--staging-site CCG --output-site local
--cluster horizontal --submit
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Resources Archive - One Workflow

workflow: blast
Found 24 matching entries.

export tasks
virtual resident swap _
. cpu concurrent bytes . footprint
command start end wall time (s) memory memory memory bytes read i files
time (s) processes written (MB)
(MB) (MB) (MB)

R . 2013-06-28 2013-06-28
Jdistributed.script 0 2658.065628 2647.76 3 5075 2424 0 5015945881 835584 53 8549
01:42:34 02:26:52

2013-06-28 2013-06-28
Jdistributed.script 1 3827.227723 382577 3 5070 2418 0 10010974054 700416 53 8549
01:01:54 02:05:42

L . 2013-06-27 2013-06-27
Jdistributed.script 10 2190.215381 218161 3 5070 2416 0 10006143297 1155072 53 8549
23:14:24 23:50:54

o _ 2013-06-27 2013-06-27
Jdistributed.script 11 2330.114277 2320.94 3 5078 2425 0 2518945500 380928 53 8549
22:22:31  23:01:21

R . 2013-06-27 2013-06-27
Jdistributed.script 12 4283.754447 4278.58 3 5090 2413 1 10005309984 380928 53 8549
22:04:56 23:16:20

2013-06-27 2013-06-28
Jdistributed.script 13 4701.645511 470044 3 5075 2424 0 5014224349 454656 53 8549
23:14:23 00:32:44
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Workload Modeling and Characterization

' ] f Workload
R Characterization

dvidt F-------- quklogd

Estimation
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Context

Task Characteristics:
Runtime
Disk Space
Memory Consumption

Scheduling and
Resource Provisioning
Algorithms

« Methods assume that accurate estimations are available

« A successful workflow execution mainly depends on how tasks
are planned and executed

« We propose a method to estimate fine-grained task
characteristics online

USC Viterbi
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Scientific Workflows

« Directed Acyclic Graph (DAG)

* Nodes denote tasks
» Edges denote task dependencies
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Montage Workflow SoyKB Workflow Epigenomics Workflow

. . Periodogram Workflow Rosetta Workflow
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Workflow Execution Profiling

Task estimation could be based on mean values

I

Task Count Ru.nt.u;ﬁe 1/0 Read I/ONWrite Memory Peak
td. Dev. Mean {ME} Std. Dev. Mean (MB) \ 5td. Dev. Mean (MB)N_5td. Dev.
mProject PP TOG5 0.19 16.20 0.80 9.96 0.40
mDiffFit 23733 5.76 13 111
mConcatFit 3 122.04 5.27 0.01 3.15 D []'1 T.26 0.01
mBgModel 3 2008.08 88.50 4 14 0.04 0.27 14.41 0.01
- 1175 58

mBackground TOG5 13 E'? 6.78
mAdd 51 2191 ?E- 560.39
mShrink 48 B3L.AT 0.31
mJPEG 3 46,18 0.02 I] 'TE

Task estimation based on average may lead
to significant estimation errors
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Task Estimation Process: Estimate task resource
needs based on input data size

Application?
Based on Re_gressmn_ Tre_es v T A v v v
Built offline from historical data Mont. Epi . Period
ana|yses ontage pigenomics erioaogram Rosetta SDyKB
v
_ Task Type?
1. If the data is already correlated g
(e.g., input data and runtime, or input v v/ v
data and output data), no clustering is c .
e astqSplit sol2sanger map
performed and predictions are done ,
based on the correlation ratio e —
2. If not, clustering is performed to GRS S
increase the probability of having , ,
subsets where the data is correlated — — —
Runtime I/O Write Memory
3. If the clustering results in i ; |
correlated subsets, the ratio is used ' — _—
= : v v v
to perform predictions (as in step 1)
Cluster 1 Cluster 2 Cluster n
4. 1f no correlation can be found after ;
clustering, the algorithm tries to v
identify probability distributions that Correlated? No Probability Distribution? [ 2
would describe the subset :
------- 4 Yes :
Y A 4
Ratio Normal Gamma Mean
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Online Estimation Process

« Based on the MAPE-K loop

 Task executions are constantly
monitored

« Estimated values are updated, and a
new prediction is performed

Application?

<“ I

| Montage | Epigenomics | | Periodogram Rosetta | SoyKB |
Offline Estimation | <--_____
_____________ C o |
Tasks |  TTTme=——__ g -
-———— _Sytzn_"ll_sggl'_] ___________________________ ) fastqSplit | sol2sanger . | map |
| — - | Ry
| —|__ Monitoring  j&—— Execution |
|
I A I ;
Task .
: . Replanr"ng : _ | Runtime | 1/0 Write | Memory I
| completion v l - . .
! . . . | - -7 B w ¢
: Ana|yS|S New Estimation - :’ | Cluster 1 | Cluster 2 | Cluster n
- A .
: L e - =
! | o Yes
1| yes Correct no ! | voma | | canma | [ wean ]
I estimation? |
| |
| |
' . . . I
! _________Online Estimation Process _ __________!
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Experiment Conditions

« Trace analysis of 5 workflow applications

« Evaluate the accuracy of our online estimation process
« Offline: estimation based on a-priori knowledge
 Online-m: estimation based on the median value

* Online-p: estimation based on probability distributions

» Uses the Kolmogorov-Smirnov test (K-S test) to compare empirical data to
standard distributions
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Experimental Results: SoyKB Workflow

Runtime I/0O Write Memory

Task Estimation Avg. Error Avg.Error Avg.Error
(%) (%) (%) ’ h
alignment_to  Offline 14.73 22.98 10.34 H _ H
_reference Online-m 17.31 22.98 10.34 Onllne PI’OCGSS Medlan
Online-p 1473 2298  10.34 Avg. Runtime Error: 20%
sort_sam Offline 28.02 19.31 15.50 .
Online-m 21.44 4.16 2.65 Avg. I/0O Write Error: 11%
Online-p 13.97 4.16 2.65 .
dedup Offfine 35.11 29.66 5141 Avg. Memory Error: 14%
Online-m 18.76 6.09 5.77
Online-p 10.01 6.09 5.77
add_replace Offline 59.55 29.35 25.84 1 —
Online-m 22.14 5.98 4.08 Onllne Process - .
Online-p 9.08 5.98 4.08 Probability Distribution
realign_target Offline 63.22 31.04 40.69 ;
_creator Online-m 31.18 8.57 10.15 AVg Runt|me EI’I’OI’Z 13%
Online-p 27.83 8.57 10.15 o .
indel_realign  Offline 51.02 20.02 37.41 Avg. I/O Write Error: 8%
Online-m 29.47 3.78 7.09 . 0
Online-p 18.15 3.78 7.09 AVg Memory Error 11/0
haplotype Offline 103.77 94.17 76.23 E 4
_caller Online-m 28.39 7.90 8.44
Online-p 14.06 7.90 8.44 ) .
genotype_gvcfs Offline 88.50 44.11 51.98 1
Online-m 21.96 4.99 5.53 1
Online-p 7.14 4.99 5.53 Ofﬂlne Process
combine Offline 22.27 30.53 18.34 A\/g_ Runtime Error: 49%
_variants Online-m 8.44 5.16 3.10 .
Online-p 8.44 5.16 3.10 Avg. I/O Write Error: 55%
select_variants Offline 17.89 16.45 22.32 .
_indel Online-m 3.12 9.02 10.43 Avg. Memory Error: 57%
Online-p 3.12 9.02 10.43 % y
filtering_indel Offline 15.70 12.70 10.95
Online-m 5.86 2.77 3.49
Online-p 5.86 2.77 3.49
select_variants Offline 18.01 14.43 24.70 . .
_snp Online-m 3.03 1.86 10.41 Poor output data estimations
Online-p 3.03 1.86 10.41 . H :
filtering_snp Offline 13.45 28.14 37.08 Ieads to a Chaln Of estimation
Online-m 2.93 7.29 18.16 1 1 iFi
Online-p 203 720 1816 errors in scientific workflows

. . merge_gvcf Offline 37.30 42.68 49.99
USC V lterbl Online-m 1.91 2.04 1.88
School of Engineering Online-p 4.91 2.04 1.88
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Provisioning and Resource Allocation

[ dVv/dt ]

Resource
Allocation

Monitoring Execution
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Resource Allocation

« Tasks have different sizes (known at runtime) while
computation nodes have fixed sizes

Tasks Computation Nodes

* Resource allocation strategies

* One task per node
= Resources are underutilized
= Throughput is reduced
« Many tasks per node
= Resources are exhausted
= Jobs fail
= Throughput is reduced
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General Approach

e Setting tasks

* What do we know?
= Maximum size?
= Size probability distribution?
= Empirical distribution?
= dV/dt Prediction information?

« Qur approach
« Setting task sizes to reduce resource

waste

= Modeling of resource sizes (e.g., memory,
disk, or network bandwidth)

= Assumes the task size distribution is known
= Adapts to observed behavior
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Synthetic Workload Experiment

« Exponential Distribution

5000 Tasks
Memory according to an
exponential distribution

= min 10 MB, max 100 MB, average
20 MB

Tasks run anywhere from 10 to 20 300
seconds

100 computation nodes available, -
from ND Condor pool

Each node with 4 cores and a limit
of 100 MB of memory

500

400

task count

100
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Example: One, Two and Multi-step allocations

normalized resource

| units per task

M+ 8s (1.00) (0.37) (less is better)
100%

m+7s

m+ 6S

m+ 5s :

multi-step, many-step
3.0% :

© M 4s allocation, several
7 allocations are computed per
c . . .
S m+3s task. First allocation is
S conservative. If one
O . .
= m+2s IS o location fails, another one

" S

77.7%
m
one-step (always max) MU | S |
two-step, each task first runs with some
computed allocation (aggressive). If the task fails because o4

USCViterbi of resources exhaustion, it is rerun with the maximum
School of Eng'meering al I Owe d .
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dV/dt Products

= Monitoring tools:

— kickstart and resource-monitor, support different monitoring
methods: ptrace system call interposition, library interposition,
polling, support different levels of monitoring information, workflow
system independent

= Workflow archive:

— Sets of various types workflows with detailed performance
information

— Ongoing data collection effort

= Methods:

— Online resource need estimation using regression trees and data
clustering techniques

— Dynamic resource allocation using runtime behavior information

USC Viterbi
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Next Steps
= Enhance monitoring and modeling

— Extend modeling to HPC applications
— Investigate energy consumption

= Closetheloop
— Use resource predictions for provisioning and scheduling
— Improve automation of entire loop
— Conduct end-to-end experiments with real workloads

= Productize tools
— Turn modeling software into a service

J Workload

Workload Archive Characterization

_ Workload
Execution Traces dv/idt  f---—-"-- Estimation
/// \\\ I
|
’ ) v
. . - - H R r
USC Viterbi Monitoring Execution esouree
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